Перевод: со всех языков на английский

с английского на все языки

test date generator

  • 1 генератор тестов

    Русско-английский словарь по нефти и газу > генератор тестов

  • 2 генератор тестов

    2) Information technology: test data generator
    4) Microelectronics: generator, test generator

    Универсальный русско-английский словарь > генератор тестов

  • 3 установка


    installation (instl)
    - (агрегат, блок) — unit
    - (комплекс оборудования или агрегатов, объединенный общим назначением, процесс монтажа) — installation
    - (процесс и состояние установки подвижных элементов, органов управления, задатчиков н т.п. в определенное положение) — setting, selection, positioning (of controls, selectors, etc. to desired position)
    - (пульт контроля управления) — set, unit
    -, аварийная силовая — emergency power unit (epu)
    -, автоматическая, пусковая (апу, для запуска бортовых ракет и спец. снарядов) — launcher
    - аэродромной проверки и запуска, электрическая — ground power unit for servicing and starting (gpu)
    - аэродромного питанияground power unit (gpu)
    - в нуль (сигнала)(signal) zeroing
    - воздушного запуска (увз)ground pneumatic start unit
    -, вспомогательная силовая (всу) — auxiliary power unit (apu)
    - вспомогательная силовая установка (раздел 049)airborne auxiliary power
    бортовые силовые установки (двигатели), предназначенные для выработки электрической, гидравлической или пневматической энергии для питания систем ла. — those airborne power plants (engines) installed on the aircraft for the purpose of generating and supplying a single type or combination of auxiliary electric, hydraulic, pneumatic or other power.
    всу состоит из гтд со свободной турбиной для привода эл. генератора и воздушного компрессора. — the apu consists of а turboshaft engine driving а free turbine, which in turn оperates an electric generator and air compressor.
    - высотомераaltimeter setting

    a pressure reading set into an altimeter to adjust for a given barometric pressure.
    - высотомера пo давлению у земли (на уровне аэродрома)qfe setting
    - высотомера по давлению приведенному к уровню моря — qnh setting set the altimeter to actual qnh at transition level.
    - гидродробеструйнаяhydraulic shot-blast unit
    - двигателяengine installation
    - (для) заправки гидросистемыhydraulic system servicing set
    - для заправки топливом в полете, подвесная — refueling pod /store/
    - для зарядки кислородомoxygen charging set
    - для испытания расходомеромflowmeter test set
    - для испытания тахометровtachometer test set
    - для проверки герметичности кабин(pressurized) cabin leak test set
    - для проверки гидросистемы (самолета) — aircraft hydraulic test set /rig/
    - для проверки гироприборов (упг)turn table
    - для проверки пневмосистемы — pneumatic test set /rig/
    - для прокачки (гироскопических приборов)turn table
    - для прокачки (жидкостных систем)flushing unit
    - домкратов (под переднюю и основную опору шасси, схема) — nose and main wheel jacking
    - дробеструйная _ закрылков, автоматическая — shot-blast unit automatic flap positiong
    - зарядная (заправочная)charging set
    -, измерительная — measuring set
    -,испытательная (поверочная) — test set
    - испытательная (стенд) "- карты ручная" (навигац. планшета) — test rig (map) man slew
    -, контрольная тахометрическая (кту) — tachometer test set
    -, контрольно-поверочная (комплекс, пульт, станция) — test set
    - контрольно-поверочная (поворотная платформа для проверки гироскопических приборов) — turn table (to test gyroscopic instruments)
    - контрольно-поверочная (стенд) — test stand /rig/
    -, контрольно-поверочная (тестер) — tester
    -, контрольно-поверочная (устройство) — test unit
    - крепежной деталиinstallation of fastener
    необходимо предусмотреть невозможность неправильной установки крепежной детали (болта), если ее неправильная установка может привести к опасным последствиям. — if incorrect or incomplete installation of fastener (bolt) would introduce detrimental effects, proper means must be provided to prevent incorrect installation.
    -, наземная поверочная — ground test set /rig/
    - (монтаж) на самолетinstallation (of unit) on airplane
    - на самолет (графа формуляpa двигателя)installed on airplane
    -, обезличенная (деталей) — indiscriminate installation (of parts)

    never interchange the mating parts indiscriminately.
    -, переносная контрольноповерочная — portable test unit, portable tester
    -, поверочная (комплекс) — test set
    -, поверочная (стенд) — test stand
    -, поверочная (тестер) — tester
    -, поверочная (устройство) — test unit
    - поворотная (упг, для проверки гироскопических приборов) — turn table
    -, подвесная пушечная (ппу) — gun pod (g/pod)
    -, подвесная, пушечная, внешняя (внутренняя) — outboard (inboard) gun pod (outbd or inbd g/pod)
    -, подвижная пушечная (гондола для установки пушки, управляемой в вертикальной плоскости) — flexible gun pod
    -, пушечная — gun (installation)
    - режима работы (двигателя)power setting
    при изменении режима работы двигателя, рычаг управления двигателем должен перемещаться плавно. — in changing the power setting, the power control lever must be moved gradually.
    -, силовая (раздел 071) — power plant
    силовая установка ла включает собственно двигатель, воздухозаборник,подвеску (крепление) двигателя, капоты, воздухозаборники систем и агрегатов, регулируемые створки капота. — the overall power package inclusive оf engine, air intake, mount, cowling, scoops, cowl flaps.
    -, силовая (двигатель) — power unit
    -, силовая (группа двигателей) — power unit
    система, состоящая из одного или нескольких двигателей, узлов и агрегатов, обеспечивающая тягу независимо от др. силовых установок, но не включающая устройств для кратковременного увеличения тяги. — power unit is а system of one or more engin which are together necessary to provide thrust, independently of other power unit(s), but not including short period thrust producing devices.
    -, силовая (параграф разд. "ограничения" рлэ) — power plant
    в данном разделе указываются ограничения, обуславливающие безопасность эксплуатации двигателя, возд. винтов и агрегатов силовой установки ла. — the limitations to ensure the safe operation of the engine, propellers, and power plant accessories as installed in the airplane should be given.
    - силовой установкиpower plant installation

    the complete installation forming a power plant.
    - синусоидальных колебаний, двухстепенная (для проверки гироскопов) — turn table
    -, случайная (непригодных деталей) — inadvertent return to service
    на крепежные детали, имеющие износ и непригодные к дальнейшей эксплуатации, но no внешнему виду кажущиеся исправными, должны наноситься четкие метки, чтобы нe допустить их случайной установки. — fasteners determined to be worn and inairworthy but which give appearance of suitability for installation should be marked conspicuously to prevent their inadvertent return to service.
    - с питанием от сети, наземная пусковая — ground starter unit operating on mains supply
    - стабилизатора, взлетная — stabilizer takeoff setting
    - стабилизатора, посадочная — stabilizer landing setting
    -, стрелково-пушечная, подвижная — flexible gun
    - трапа (бортового) в рабочее положение — airstairs extension the airstairs extension and retraction is actuated electrically.
    -, турбогенераторная (тг, вспомогательная силовая) — auxiliary power unit (apu)
    -, турбонасосная (тну, гидравлический насос с воздушным приводом) — turbine-driven hydraulic pump
    -, турбохолодильная (тху системы кондиционир. воздуха) — cooling turbine (turb)
    -, турельная (пулеметная) — (gun) turret
    -, ультразвуковая (очистительная ванна) — supersonic bath
    - шага возд. винта — propeller pitch setting
    -, шкворневая (для стрельбы из личного оружия десантников) — gun pivot
    выбор силовой у. — selection of the power plant
    дата у. (изделия) — date installed
    порядок у. — installation procedure
    порядок обратный у. — reverse procedure of installation

    Русско-английский сборник авиационно-технических терминов > установка

  • 4 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

См. также в других словарях:

  • Automatic test pattern generation — ATPG (acronym for both Automatic Test Pattern Generation and Automatic Test Pattern Generator) is an electronic design automation method/technology used to find an input (or test) sequence that, when applied to a digital circuit, enables testers… …   Wikipedia

  • Cryptographically secure pseudorandom number generator — A cryptographically secure pseudo random number generator (CSPRNG) is a pseudo random number generator (PRNG) with properties that make it suitable for use in cryptography. Many aspects of cryptography require random numbers, for example: Key… …   Wikipedia

  • Mondo Generator — Background information Origin Van Nuys, California, USA Genres Hard rock …   Wikipedia

  • Central pattern generator — Central pattern generators (CPGs) are neural networks that produce rhythmic patterned outputs without sensory feedback.[1][2] CPGs have been shown to produce rhythmic outputs resembling normal rhythmic motor pattern production even in isolation… …   Wikipedia

  • Random password generator — A random password generator is software program or hardware device that takes input from a random or pseudo random number generator and automatically generates a password. Random passwords can be generated manually, using simple sources of… …   Wikipedia

  • Radioisotope thermoelectric generator — A radioisotope thermoelectric generator (RTG, RITEG) is an electrical generator which obtains its power from radioactive decay. In such a device, the heat released by the decay of a suitable radioactive material is converted into electricity by… …   Wikipedia

  • Web to date — Entwickler Data Becker GmbH Co. KG Aktuelle Version 8.0 (September 2011) Betriebssystem Microsoft Windows Kategorie Web Content Management System …   Deutsch Wikipedia

  • TDG — Die Abkürzung TDG bedeutet: Tele Dienste GmbH Teledienstegesetz Test Date Generator Three Days Grace (kanadische Band) Topological Dependency Grammar Transport Dangerous Goods Tribune de Genève …   Deutsch Wikipedia

  • Tdg — Die Abkürzung TDG bedeutet: Tele Dienste GmbH Teledienstegesetz Test Date Generator Three Days Grace (kanadische Band) Topological Dependency Grammar Transport Dangerous Goods Tribune de Genève …   Deutsch Wikipedia

  • TDG — • Teledienstegesetz (BMBF) • Test Date Generator ( > IEEE Standard Dictionary ) …   Acronyms

  • TDG — [1] Teledienstegesetz (BMBF) [2] Test Date Generator ( > IEEE Standard Dictionary ) …   Acronyms von A bis Z

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»